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“One of my avowed aims is to 
see talking as a special case or 

variety of purposive, indeed 
rational, behavior…” 

Leopards have wings.
Lions lay eggs.

Peacocks dont have beautiful feathers.
Tigers have pouches.
Sharks have manes.

Ticks dont carry Lyme disease.
Kangaroos have spots.

Robins carry malaria.
Mosquitos dont carry malaria.

Sharks lay eggs.
Leopards are juvenile.

Sharks dont attack swimmers.
Tigers dont eat people.

Sharks are white.
Mosquitos attack swimmers.

Robins are female.
Lions are male.

Tigers eat people.
Swans are full−grown.

Sharks attack swimmers.
Swans are white.

Leopards have spots.
Lions have manes.

Robins lay eggs.
Ducks have wings.

Kangaroos have pouches.
Mosquitos carry malaria.

Ticks carry Lyme disease.
Cardinals are red.

Peacocks have beautiful feathers.
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How can we make quantitative formal 
models of human language use? 

9 |= ¬8



How can we make robots talk better? 

I like Bayes and 
Grice and Montague!



Reference games

Speaker: Imagine you are talking to someone 
and want to refer to the middle object. Would 

you say “blue” or “circle”?

Listener: Someone uses the word “blue” to 
refer to one of these objects. Which object are 

they talking about?

Frank and Goodman (2012)



Social reasoning

blue:
L0(o|u,C) / PC(o)L(o, u)

target object

objects in contextutterance

meaning:  
is u true of o?
L(o, u) 2 {0, 1}



blue:

Social reasoning

“blue”

L0(o|u,C) / PC(o)L(o, u)

S1(u|o, C) / e

↵U(u,o,C)

U(u, o, C) = � lnL0(o|u,C)� cost(u)



Social reasoning

“blue”

L0(o|u,C) / PC(o)L(o, u)

S1(u|o, C) / e

↵U(u,o,C)

U(u, o, C) = � lnL0(o|u,C)� cost(u)

L1(o|u) / PC(o)S1(u|o)

All models implemented as probabilistic programs in WebPPL.



Experiment
Speaker (N=206)
Listener (N=263)

Prior (N=276)



Results
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Rational speech acts

• Rational Speech Act models

• Understanding is a Bayesian inference using 
context and model of speaker.

• Production is a rational(ish) decision with 
goals to be informative, efficient, etc. 

• This extends to many language understanding 
phenomena, Goodman & Frank 2016 for a 
review.



Nonliteral language

I told you a thousand times already.

A latte at that hipster place costs ten dollars.

My phone is a hundred years old.

But soft! What light 
through yonder window 
breaks? It is the east, and 

Juliet is the sun.



Nonliteral language

• Puzzle: understanding must start in 
conventional, literal meaning; but 
language is often used in ways that are 
literally* false.

• Why is exaggeration not lying?

• The simplest RSA model can’t predict 
non-literal usage.

*I mean “literally” literally, not non-literally as “figuratively”.



Model
• Non-literal interpretation often conveys 

information about opinion, beyond the 
objective world state.

• Extend the “world”  
of interpretation to  
have these opinion  
dimensions.  
w=(state, affect)

Kao, Wu, Bergen, Goodman (2014)



Model
• The speaker may have a goal of 

conveying only opinion, and not care 
about the actual state.

• Allow listener to  
reason about the  
topic of conversation  
(QUD).

Kao, Wu, Bergen, Goodman (2014)



Model
• A QUD is a function mapping worlds to 
relevant information.

Kao, Wu, Bergen, Goodman (2014)

Q
a↵ect

((s, a)) = a

Q
state

((s, a)) = s

Q
both

((s, a)) = (s, a)



Model
• A QUD is a function mapping worlds to 
relevant information.

• A speaker aims to be informative about 
the projected world. 

Kao, Wu, Bergen, Goodman (2014)

S1(u|w,Q) / eU(u,w,Q)

U(u,w,Q) = � ln

X

w0

�Q(w)=Q(w0)L0(w
0|u)� cost(u)



Model
• The pragmatic listener isn’t sure which 

speaker she is hearing from.

• She jointly infers the interpretation and 
the QUD.

Kao, Wu, Bergen, Goodman (2014)

L1(w,Q|u) / P (w)P (Q)S1(u|w,Q)

S1(u|w,Q) / eU(u,w,Q)

U(u,w,Q) = � ln

X

w0

�Q(w)=Q(w0)L0(w
0|u)� cost(u)



Price priors

30 participants



Price priors



Affect priors

30 participants



Affect priors



Hyperbole experiment

120 participants
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Redundant reference

Speaker: Imagine you are talking to someone 
and want to refer to the right object. What 

would you say?

“green square”

• When given the chance, people often 
produce redundant information.



Free-production games

• Real-time two player language games 
with free use of chat window.

• Lots of situated language use data! 



RSA with soft semantics

• Basic RSA doesn’t explain redundant 
reference (Cf. Gatt, et al).

• If the modifiers were noisy, redundancy 
would be a safe bet….



RSA with soft semantics
meaning: real valued, 
instead of Boolean

• Assume compound modifiers compose by 
multiplication: 

• Assume some “fidelity” for color and for 
size, that moderates the truth values:

meaning(“small blue”,   )  
=fid(size)*fid(color)

meaning(“small red”,   )  
=fid(size)*(1-fid(color))

L0(o|u,C) / PC(o)L(o, u)

L(o, u) 2 [0, 1]

L(o, u1u2) = L(o, u1)L(o, u2)



Experiment
• 58 pairs of participants on Mechanical Turk

• random assignment to speaker/listener role

• 72 trials (half targets, half fillers)

• 36 object types

• on all target trials, one of size or color was 
sufficient

• scene variation manipulation:

• total number of distractors (2, 3, 4)

• number of distractors that shared the 
insufficient feature value with target

Degen, Hawkins, Graf, Goodman (in prep)



Posterior predictive
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Inferred parameters
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Noun-level choice

• At what level of reference will people 
refer to an object?

• “goldfish” vs “fish” vs “animal”
Graf, Degen, Hawkins, Goodman (2016)



Noun-level choice
2014; Orita, Vornov, Feldman, & Daumé III, 2015). We de-
scribe an RSA model of nominal reference that includes in-
formativeness, cost, and typicality effects. A speaker in RSA
is treated as an approximately optimal decision maker who
chooses which utterance to use to communicate to a listener.
The speaker has a utility which includes terms for the cost of
producing an utterance (in terms of length or frequency) and
the informativeness of the utterance for a listener. The lis-
tener is treated as a literal Bayesian interpreter who updates
her beliefs given the truth of the utterance. These truth val-
ues are usually treated as deterministic (an object either is a
“dog” or it is not); here we relax this formulation in order to
incorporate typicality effects. That is, we elicit typicality rat-
ings in a separate experiment, and model the listener as updat-
ing her beliefs by weighting the possible referents according
to how typical each is for the description used. We evalu-
ate the quantitative model predictions against our production
data. The model also allows us evaluate the need for each
extra component—typicality, length, frequency—and deter-
mine whether the empirical bias toward reference at the basic
level (Rosch et al., 1976) can be accounted for without build-
ing it in as a separate factor.

Experiment: nominal reference game
Methods
Participants and materials We recruited 56 self-reported
native speakers of English over Mechanical Turk. Partici-
pants completed the experiment in pairs of two, yielding 28
speaker-listener pairs.

Stimuli were selected from nine distinct domains, each cor-
responding to distinct basic level categories such as “dog.”
For each domain, we selected four subcategories to form our
target set (e.g. “dalmatian”, “pug”, “German Shepherd” and
“husky”). Each domain also contained an additional item
which belonged to the same basic level category as the tar-
get (e.g. “greyhound”) and items which belonged to the same
supercategory but not the same basic level (e.g. “elephant” or
“squirrel”). The latter items were used as distractors.

Each trial consisted of a display of three images, one of
which was designated as the target object. Every pair of par-
ticipants saw every target exactly once, for a total of 36 trials
per pair. These target items were randomly assigned distrac-
tor items which were selected from four different context con-
ditions, corresponding to different communicative pressures
(see Fig. 2). We refer to these conditions with pairs of nu-
merals specifying which levels of the taxonomy are present
in the distractors: (a) item12: one distractor of the same ba-
sic level and one distractor of the same superlevel (e.g. target:
“dalmatian”, distractor 1: “greyhound”, distractor 2: “squir-
rel”), (b) item22: two distractors of the same superlevel, (c)
item23: one distractor of the same superlevel and one unre-
lated item and (d) item33: two unrelated items.

Furthermore, the experiment contained 36 filler items, in
which participants were asked to produce referential expres-
sions for objects which differed only in size and color. Images

Figure 2: The four context conditions, exemplified by the dog
domain. The target is outlined in green; the types of distrac-
tors differ with condition (see text).

from filler trials were not reused on target trials. Trial order
was randomized.

Procedure Pairs of participants were connected through a
real-time multi-player interface (Hawkins, 2015), with one
member of each pair assigned the speaker role and the other
to the listener role. Participants kept their allotted roles for
the entire experiment. The setup for both the speaker and
the listener is shown in Fig. 1. Each saw the same set of
three images, but positions were randomized to rule out trivial
position-based references like “the middle one.” The target
object was identified by a green square surrounding it for the
speaker (but not listener). Players used a chatbox to send text
messages to each other. The task was for the speaker to get
the listener to select the target object.

Annotation To determine the level of reference for each
trial, we followed the following procedure. First, trials on
which the listener selected the wrong referent were excluded,
leading to the elimination of 1.2% of trials. Then, speak-
ers’ and listeners’ messages were parsed automatically; the
referential expression used by the speaker was extracted for
each trial and checked for whether it contained the current
target’s correct sub, basic or super level term using a sim-
ple grep search. In this way, 66.2% of trials were labelled
as mentioning a pre-coded level of reference. In the next
step, remaining utterances were checked manually to deter-
mine whether they contained a correct level of reference term
which was not detected by the parsing algorithm due to typos
or grammatical modification of the expression. In this way,
meaning-equivalent alternatives such as “doggie” for “dog”,
or contractions such as “gummi”,“gummies” and “bears” for
“gummy bears” were counted as containing a level of ref-
erence term. This caught another 13.8% of trials. A total
of 20.0% of correct trials were excluded because the utter-
ance consisted only of an attribute of the superclass (“the
living thing” for “animal”), of the basic level (“can fly” for
“bird”), of the subcategory (“barks” for “dog”) or of the par-
ticular instance (“the thing facing left”) rather than a cate-
gory noun. These kinds of attributes were also sometimes

• 56 Ps (28 pairs), 36 trials each.

• Speaker utterances annotated as sub / 
basic / super / other.

Graf, Degen, Hawkins, Goodman (2016)



Typicality semantics

meaning(category,object)=
mean of empirically measured typicality ratings, in [0..1]

meaning(“rose”,   )=0.99

meaning(“rose”,   )=0.15

meaning(“rose”,   )=0.01

2014; Orita, Vornov, Feldman, & Daumé III, 2015). We de-
scribe an RSA model of nominal reference that includes in-
formativeness, cost, and typicality effects. A speaker in RSA
is treated as an approximately optimal decision maker who
chooses which utterance to use to communicate to a listener.
The speaker has a utility which includes terms for the cost of
producing an utterance (in terms of length or frequency) and
the informativeness of the utterance for a listener. The lis-
tener is treated as a literal Bayesian interpreter who updates
her beliefs given the truth of the utterance. These truth val-
ues are usually treated as deterministic (an object either is a
“dog” or it is not); here we relax this formulation in order to
incorporate typicality effects. That is, we elicit typicality rat-
ings in a separate experiment, and model the listener as updat-
ing her beliefs by weighting the possible referents according
to how typical each is for the description used. We evalu-
ate the quantitative model predictions against our production
data. The model also allows us evaluate the need for each
extra component—typicality, length, frequency—and deter-
mine whether the empirical bias toward reference at the basic
level (Rosch et al., 1976) can be accounted for without build-
ing it in as a separate factor.

Experiment: nominal reference game
Methods
Participants and materials We recruited 56 self-reported
native speakers of English over Mechanical Turk. Partici-
pants completed the experiment in pairs of two, yielding 28
speaker-listener pairs.

Stimuli were selected from nine distinct domains, each cor-
responding to distinct basic level categories such as “dog.”
For each domain, we selected four subcategories to form our
target set (e.g. “dalmatian”, “pug”, “German Shepherd” and
“husky”). Each domain also contained an additional item
which belonged to the same basic level category as the tar-
get (e.g. “greyhound”) and items which belonged to the same
supercategory but not the same basic level (e.g. “elephant” or
“squirrel”). The latter items were used as distractors.

Each trial consisted of a display of three images, one of
which was designated as the target object. Every pair of par-
ticipants saw every target exactly once, for a total of 36 trials
per pair. These target items were randomly assigned distrac-
tor items which were selected from four different context con-
ditions, corresponding to different communicative pressures
(see Fig. 2). We refer to these conditions with pairs of nu-
merals specifying which levels of the taxonomy are present
in the distractors: (a) item12: one distractor of the same ba-
sic level and one distractor of the same superlevel (e.g. target:
“dalmatian”, distractor 1: “greyhound”, distractor 2: “squir-
rel”), (b) item22: two distractors of the same superlevel, (c)
item23: one distractor of the same superlevel and one unre-
lated item and (d) item33: two unrelated items.

Furthermore, the experiment contained 36 filler items, in
which participants were asked to produce referential expres-
sions for objects which differed only in size and color. Images

Figure 2: The four context conditions, exemplified by the dog
domain. The target is outlined in green; the types of distrac-
tors differ with condition (see text).

from filler trials were not reused on target trials. Trial order
was randomized.

Procedure Pairs of participants were connected through a
real-time multi-player interface (Hawkins, 2015), with one
member of each pair assigned the speaker role and the other
to the listener role. Participants kept their allotted roles for
the entire experiment. The setup for both the speaker and
the listener is shown in Fig. 1. Each saw the same set of
three images, but positions were randomized to rule out trivial
position-based references like “the middle one.” The target
object was identified by a green square surrounding it for the
speaker (but not listener). Players used a chatbox to send text
messages to each other. The task was for the speaker to get
the listener to select the target object.

Annotation To determine the level of reference for each
trial, we followed the following procedure. First, trials on
which the listener selected the wrong referent were excluded,
leading to the elimination of 1.2% of trials. Then, speak-
ers’ and listeners’ messages were parsed automatically; the
referential expression used by the speaker was extracted for
each trial and checked for whether it contained the current
target’s correct sub, basic or super level term using a sim-
ple grep search. In this way, 66.2% of trials were labelled
as mentioning a pre-coded level of reference. In the next
step, remaining utterances were checked manually to deter-
mine whether they contained a correct level of reference term
which was not detected by the parsing algorithm due to typos
or grammatical modification of the expression. In this way,
meaning-equivalent alternatives such as “doggie” for “dog”,
or contractions such as “gummi”,“gummies” and “bears” for
“gummy bears” were counted as containing a level of ref-
erence term. This caught another 13.8% of trials. A total
of 20.0% of correct trials were excluded because the utter-
ance consisted only of an attribute of the superclass (“the
living thing” for “animal”), of the basic level (“can fly” for
“bird”), of the subcategory (“barks” for “dog”) or of the par-
ticular instance (“the thing facing left”) rather than a cate-
gory noun. These kinds of attributes were also sometimes

N=240 Ps,  
35 ratings  

each



Empirical cost

• We allow the cost of each utterance to 
depend on number of syllables and 
empirical frequency (in Google1T).

• Captures “basic-level” preference: “dog” is 
much more frequent and shorter than 
“dalmatian”.

• Inferred weights on these cost terms.



Results
mentioned in addition to the noun in the trials which were
included in the analysis—4.0% of sub level terms, 12.6% of
basic level terms, and 46.2% of super level terms contained an
additional modifier. On 0.5% of trials two different levels of
reference were mentioned; in this case the more specific level
of reference was counted as being mentioned in this trial.

Typicality norms To examine the influence of typicality on
speaker behavior, we obtained typicality estimates in a sepa-
rate norming study. 240 participants were recruited through
Mechanical Turk. On each trial, we presented participants
with an image from the main experiment and asked them
“How typical is this for X?”, where X was a category label
at the sub-, basic-, or super- level. They then adjusted a slider
bar ranging from not at all typical to very typical.

Due to the large number of possible combinations of ob-
jects, we only collected norms for certain combinations of
objects and descriptions: for each target (e.g., dalmatian),
we collected typicality at all three levels (“dalmatian,” “dog,”
and “animal”). For each distractor of the same superclass as
the target (distsamesuper, e.g., a kitten), we collected typ-
icality at all three levels of the target. For each distractor
of a different superclass (distdiffsuper, e.g., a basketball) we
only collected typicality at the super- level of the target (“an-
imal”) and assumed lowest typicality at the other levels. This
resulted in the following distribution of 745 norms: target-
sub (36), target-basic (36), target-super (36), distdiffsuper-
super (168), distsamesuper-sub (331), distsamesuper-basic
(93), and distsamesuper-super (45).

Each participant provided typicality ratings for 7 target, 10
distdiffsuper, and 28 distsamesuper cases (randomly sampled
from the total set of items). Each case received between 6
and 27 ratings. Raw slider values ranged from 0 (not typical)
to 1 (very typical); average slider values were used as the
typicality values throughout our results.

Results
Proportions of sub, basic, and super level utterance choices in
the different context conditions are shown in the top row of
Fig. 3. The sub level term was preferred where it was nec-
essary for unambiguous referent identification, i.e., when a
distractor of the same basic level category as the target was
present in the scene (item12, e.g. target: dalmatian, distrac-
tor: greyhound). Where it was not necessary (i.e., when there
was no other object of the same basic level category present,
as in conditions item22, item23 and item33), there was a clear
preference for the basic level term. The super level term was
strongly dispreferred overall, though it was used on some tri-
als, especially where informativeness constraints on utterance
choice were weakest (item33).

To test for the independent effects of informativeness,
length, frequency, and typicality on sub-level mention, we
conducted a mixed effects logistic regression. Frequency was
coded as the difference between the sub and the basic level’s
log frequency, as extracted from the Google Books Ngram

sub basic super
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Figure 3: Empirical utterance probabilities (top row) and
model posterior predictive means (bottom row) by condition,
collapsed across targets and domains. Error bars indicate
bootstrapped 95% confidence intervals.

English corpus ranging from 1960 to 2008. Length was coded
as the ratio of the sub to the basic level’s length.1 That is, a
higher frequency difference indicates a lower cost for the sub
level term compared to the basic level, while a higher length
ratio reflects a higher cost for the sub level term compared to
the basic level. Typicality was coded as the ratio of the tar-
get’s sub to basic level label typicality. That is, the higher the
ratio, the more typical the object was for the sub level label
compared to the basic level. For instance, the panda was rel-
atively atypical for its basic level “bear” (mean rating 0.75)
compared to the sub level term “panda bear” (mean rating
0.98), which resulted in a relatively high typicality ratio.

Condition was coded as a three-level factor: sub neces-
sary, basic sufficient, and super sufficient, where item22 and
item23 were collapsed into basic sufficient. Condition was
Helmert-coded: two contrasts over the three condition levels
were included in the model, comparing each level against the
mean of the remaining levels (in order: sub necessary, ba-
sic sufficient, super sufficient). This allowed us to determine
whether the probability of type mention for neighboring con-
ditions were significantly different from each other, as sug-
gested by Fig. 3.2 The model included random by-speaker
and by-domain intercepts.

A summary of results is shown in Table 1. The log odds of
mentioning the sub level term was greater in the sub neces-
sary condition than in either of the other two conditions, and

1We used the mean empirical lengths in characters of the utter-
ances participants produced. For example, the minivan, when re-
ferred to at the subcategory level, was sometimes called “minivan”
and sometimes “van” leading to a mean empirical length of 5.64.
This is the value that was used, rather than 7, the length of “mini-
van”.

2Adding terms that code the ratio of the sub vs super level fre-
quency and length did not lead to an improvement of model fit.
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Figure 20: Scatterplot of by-target empirical utterance proportions against model posterior predic-
tive MAP estimates. Gray line indicates perfect correlation line.

HDIs overlapping with 0. This mirrors the null e↵ect of frequency found in the regression analysis.
However, a large number of cases also received a non-zero frequency weight.

In order to ascertain whether typicality as incorporated in the non-deterministic semantics was
indeed contributing to the explanatory power of the model, we ran an additional Bayesian data
analysis with an added typicality weight parameter �

t

2 [0, 1]. This parameter interpolated between
empirical typicality values (when �

t

= 1) and deterministic (i.e., 0 or 1) a priori values based on the
true taxonomy (when �

t

= 0). We found a MAP estimate for �
t

of .95, HDI = [0.82,.99], strongly
indicating that it is useful to incorporate empirical typicality values and thus providing further
support for the value of non-deterministic truth functions in modeling referential expressions.
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Figure 21: Posterior distribution over model parameters. Maximum a posteriori (MAP) �
f

= 0.10,
95% highest density interval (HDI) = [0.002,0.95]; MAP �

l

= 1.85, HDI = [1.23,2.65]; MAP � =
9.19, HDI = [7.72,10.80].
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Item-level comparison:



Learning language
• RSA works very well for explaining language 

use if we have (or directly measure) the 
literal semantics.

• Can we learn semantics from a language 
game corpus?

it has wheels

has vertical lines on the back of the chair

rectangle back with straight legs

0.7640.032 0.203

0.007 0.009 0.983

0.032 0.9410.027

utterances for novel objects

sively about each other’s expectations and intentions
to communicate more effectively than literal seman-
tic agents could. In most work on RSA, the literal
semantic agents use fixed message sets and stipu-
lated grammars, which is a barrier to experiments in
linguistically complex domains. In our formulation,
the literal semantic agents are recurrent neural net-
works (RNNs) that produce and interpret color de-
scriptions in context. These models are learned from
data and scale easily to large datasets containing di-
verse utterances. The RSA recursion is then defined
in terms of these base agents: the pragmatic speaker
produces utterances based on a literal RNN listener
(Andreas and Klein, 2016), and the pragmatic lis-
tener interprets utterances based on the pragmatic
speaker’s behavior.

We focus on accuracy in a listener task (i.e., at
language understanding). However, our most suc-
cessful model integrates speaker and listener per-
spectives, combining predictions made by a sys-
tem trained to understand color descriptions and one
trained to produce them.

We evaluate this model with a new, psycholin-
guistically motivated corpus of real-time, dyadic ref-
erence games in which the referents are patches of
color. Our task is fundamentally the same as that
of Baumgaertner et al. (2012), but the corpus we re-
lease is larger by several orders of magnitude, con-
sisting of 948 complete games with 53,365 utter-
ances produced by human participants paired into
dyads on the web. The linguistic behavior of the
players exhibits many of the intricacies of language
in general, including not just the context dependence
and cognitive complexity discussed above, but also
compositionality, vagueness, and ambiguity. While
many previous data sets feature descriptions of in-
dividual colors (Cook et al., 2005; Munroe, 2010;
Kawakami et al., 2016), situating colors in a com-
municative context elicits greater variety in language
use, including negations, comparatives, superlatives,
metaphor, and shared associations.

Experiments on the data in our corpus show that
this combined pragmatic model improves accuracy
in interpreting human-produced descriptions over
the basic RNN listener alone. We find that the
largest improvement over the single RNN comes
from blending it with an RNN trained to perform
the speaker task, despite the fact that a model based

Figure 1: Example trial in corpus collection task, from
speaker’s perspective. The target color (boxed) was pre-
sented among two distractors on a neutral background.

only on this speaker RNN performs poorly on its
own. Pragmatic reasoning on top of the listener
RNN alone also yields improvements, which more-
over come primarily in the hardest cases: 1) contexts
with colors that are very similar, thus requiring the
interpretation of descriptions that convey fine dis-
tinctions; and 2) target colors that most referring ex-
pressions fail to identify, whether due to a lack of ad-
equate descriptive terms or a consistent bias against
the color in the RNN listener.

2 Task and data collection

We evaluate our agents on a task of language un-
derstanding in a dyadic reference game (Rosen-
berg and Cohen, 1964; Krauss and Weinheimer,
1964; Paetzel et al., 2014). Unlike traditional natu-
ral language processing tasks, in which participants
provide impartial judgements of language in iso-
lation, reference games embed language use in a
goal-oriented communicative context (Clark, 1996;
Tanenhaus and Brown-Schmidt, 2008). Since they
offer the simplest experimental setup where many
pragmatic and discourse-level phenomena emerge,
these games have been used widely in cognitive sci-
ence to study topics like common ground and con-
ventionalization (Clark and Wilkes-Gibbs, 1986),
referential domains (Brown-Schmidt and Tanen-
haus, 2008), perspective-taking (Hanna et al., 2003),
and overinformativeness (Koolen et al., 2011).

To obtain a corpus of natural color reference data
across varying contexts, we recruited 967 unique
participants from Amazon Mechanical Turk to play
1,059 games of 50 rounds each, using the open-



The colors corpus
• Approx. 50k trials.

• Three conditions:  
2 far distractors,  
2 close distractors,  
split far/close distractors.

human S
0

S
1

far split close far split close far split close

# Chars 7.8 12.3 14.9 9.0 12.8 16.6 9.0 12.8 16.4
# Words 1.7 2.7 3.3 2.0 2.8 3.7 2.0 2.8 3.7
% Comparatives 1.7 14.2 12.8 3.6 8.8 13.1 4.2 9.0 13.7
% High Specificity 7.0 7.6 7.4 6.4 8.4 7.6 6.8 7.9 7.5
% Negatives 2.8 10.0 12.9 4.8 8.9 13.3 4.4 8.5 14.1
% Superlatives 2.2 6.1 16.7 4.7 9.7 17.2 4.8 10.3 16.6

Table 2: Corpus statistics and statistics of samples from artificial speakers (rates per utterance). S0: RNN speaker; S1:
pragmatic speaker derived from RNN listener (see Section 4.3). The human and artificial speakers show many of the
same correlations between language use and context type.

Comparatives and superlatives As noted in Sec-
tion 1, comparative morphology implicitly encodes
a dependence on the context; a speaker who refers
to the target color as the darker blue is presuppos-
ing that there is another (lighter) blue in the con-
text. Similarly, superlatives like the bluest one or
the lightest one presuppose that all the colors can be
compared along a specific semantic dimension. We
thus expect to see this morphology more often where
two or more of the colors are comparable in this way.
To test this, we used the Stanford CoreNLP part-of-
speech tagger (Toutanova et al., 2003) to mark the
presence or absence of comparatives (JJR or RBR)
and superlatives (JJS or RBS) for each message.

We found two related patterns across conditions.
First, participants were significantly more likely to
use both comparatives (z = 37.39) and superla-
tives (z = 31.32) when one or more distractors
were close to the target. Second, we found evidence
of an asymmetry in the use of these constructions
across the split and close contexts. Comparatives
were used significantly more often in the split con-
text (z = 4.4), where only one distractor was close
to the target, while superlatives were much more
likely to be used in the close condition (z = 32.72).3

Negatives In our referential contexts, negation is
likely to play a role similar to that of comparatives:
a phrase like not the red or blue one singles out the
third color, and blue but not bright blue achieves a
more nuanced kind of comparison. Thus, as with

3We used Helmert coding to test these specific patterns: the
first regression coefficient compares the ‘far’ condition to the
mean of the other two conditions, and the second regression co-
efficient compares the ‘split’ condition to the ‘close’ condition.

comparatives, we expect negation to be more likely
where one or more distractors are close to the tar-
get. To test this, we counted occurrences of the
string ‘not’ (by far the most frequent negation in the
corpus). Compared to the baseline far context, we
found that participants were more likely to use neg-
ative constructions when one (z = 27.36) or both
(z = 34.32) distractors were close to the target.

WordNet specificity We expect speakers to prefer
basic color terms wherever they suffice to achieve
the communicative goal, since such terms are most
likely to succeed with the widest range of listeners.
Thus, a speaker might choose blue even for a clear
periwinkle color. However, as the colors get closer
together, the basic terms become too ambiguous,
and thus the risk of specific terms becomes worth-
while (though lengthy descriptions might be a safer
strategy, as discussed above). To evaluate this idea,
we use WordNet (Fellbaum, 1998) to derive a speci-
ficity hierarchy for color terms, and we hypothesized
that split or close conditions will tend to lead speak-
ers to go lower in this hierarchy.

For each message, we transformed adjectives into
their closest noun forms (e.g. ‘reddish’ ! ‘red’),
filtered to include only nouns with ‘color’ in their
hypernym paths, calculated the depth of the hyper-
nym path of each color word, and took the maxi-
mum depth occurring in a message. For instance, the
message “deep magenta, purple with some pink” re-
ceived a score of 9. It has three color terms: “purple”
and “pink,” which have the basic-level depth of 7,
and “magenta,” which is a highly specific color term
with a depth of 9. Finally, because there weren’t
meaningful differences between words at depths of
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Abstract
We present a model of pragmatic referring
expression interpretation in a grounded com-
munication task (identifying colors from de-
scriptions) that draws upon predictions from
two recurrent neural network classifiers, a
speaker and a listener, unified by a recur-
sive pragmatic reasoning framework. Exper-
iments show that this combined pragmatic
model interprets color descriptions more ac-
curately than the classifiers from which it is
built, and that much of this improvement re-
sults from combining the speaker and listener
perspectives. We observe that pragmatic rea-
soning helps primarily in the hardest cases:
when the model must distinguish very simi-
lar colors, or when few utterances adequately
express the target color. Our findings make
use of a newly-collected corpus of human ut-
terances in color reference games, which ex-
hibit a variety of pragmatic behaviors. We also
show that the embedded speaker model repro-
duces many of these pragmatic behaviors.

1 Introduction

Human communication is situated. In using lan-
guage, we are sensitive to context and our interlocu-
tors’ expectations, both when choosing our utter-
ances (as speakers) and when interpreting the utter-
ances we hear (as listeners). Visual referring tasks
exercise this complex process of grounding, in the
environment and in our mental models of each other,
and thus provide a valuable test-bed for computa-
tional models of production and comprehension.

Table 1 illustrates the situated nature of reference
understanding with descriptions of colors from a

Context Utterance

1. xxxx xxxx xxxx darker blue

2. xxxx xxxx xxxx Purple

3. xxxx xxxx xxxx blue

4. xxxx xxxx xxxx blue

Table 1: Examples of color reference in context, taken
from our corpus. The target color is boxed. The speaker’s
description is shaped not only by this target, but also by
the other context colors and their relationships.

task-oriented dialogue corpus we introduce in this
paper. In these dialogues, the speaker is trying to
identify their (privately assigned) target color for the
listener. In context 1, the comparative darker implic-
itly refers to both the target (boxed) and one of the
other colors. In contexts 2 and 3, the target color
is the same, but the distractors led the speaker to
choose different basic color terms. In context 4,
blue is a pragmatic choice even though two colors
are shades of blue, because the interlocutors assume
about each other that they find the target color a
more prototypical representative of blue and would
prefer other descriptions (teal, cyan) for the middle
color. The fact that blue appears in three of these
four cases highlights the flexibility and context de-
pendence of color descriptions.

In this paper, we present a scalable, learned model
of pragmatic language understanding. The model is
built around a version of the Rational Speech Acts
(RSA) model (Frank and Goodman, 2012; Good-
man and Frank, 2016), in which agents reason recur-
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sively about each other’s expectations and intentions
to communicate more effectively than literal seman-
tic agents could. In most work on RSA, the literal
semantic agents use fixed message sets and stipu-
lated grammars, which is a barrier to experiments in
linguistically complex domains. In our formulation,
the literal semantic agents are recurrent neural net-
works (RNNs) that produce and interpret color de-
scriptions in context. These models are learned from
data and scale easily to large datasets containing di-
verse utterances. The RSA recursion is then defined
in terms of these base agents: the pragmatic speaker
produces utterances based on a literal RNN listener
(Andreas and Klein, 2016), and the pragmatic lis-
tener interprets utterances based on the pragmatic
speaker’s behavior.

We focus on accuracy in a listener task (i.e., at
language understanding). However, our most suc-
cessful model integrates speaker and listener per-
spectives, combining predictions made by a sys-
tem trained to understand color descriptions and one
trained to produce them.

We evaluate this model with a new, psycholin-
guistically motivated corpus of real-time, dyadic ref-
erence games in which the referents are patches of
color. Our task is fundamentally the same as that
of Baumgaertner et al. (2012), but the corpus we re-
lease is larger by several orders of magnitude, con-
sisting of 948 complete games with 53,365 utter-
ances produced by human participants paired into
dyads on the web. The linguistic behavior of the
players exhibits many of the intricacies of language
in general, including not just the context dependence
and cognitive complexity discussed above, but also
compositionality, vagueness, and ambiguity. While
many previous data sets feature descriptions of in-
dividual colors (Cook et al., 2005; Munroe, 2010;
Kawakami et al., 2016), situating colors in a com-
municative context elicits greater variety in language
use, including negations, comparatives, superlatives,
metaphor, and shared associations.

Experiments on the data in our corpus show that
this combined pragmatic model improves accuracy
in interpreting human-produced descriptions over
the basic RNN listener alone. We find that the
largest improvement over the single RNN comes
from blending it with an RNN trained to perform
the speaker task, despite the fact that a model based

Figure 1: Example trial in corpus collection task, from
speaker’s perspective. The target color (boxed) was pre-
sented among two distractors on a neutral background.

only on this speaker RNN performs poorly on its
own. Pragmatic reasoning on top of the listener
RNN alone also yields improvements, which more-
over come primarily in the hardest cases: 1) contexts
with colors that are very similar, thus requiring the
interpretation of descriptions that convey fine dis-
tinctions; and 2) target colors that most referring ex-
pressions fail to identify, whether due to a lack of ad-
equate descriptive terms or a consistent bias against
the color in the RNN listener.

2 Task and data collection

We evaluate our agents on a task of language un-
derstanding in a dyadic reference game (Rosen-
berg and Cohen, 1964; Krauss and Weinheimer,
1964; Paetzel et al., 2014). Unlike traditional natu-
ral language processing tasks, in which participants
provide impartial judgements of language in iso-
lation, reference games embed language use in a
goal-oriented communicative context (Clark, 1996;
Tanenhaus and Brown-Schmidt, 2008). Since they
offer the simplest experimental setup where many
pragmatic and discourse-level phenomena emerge,
these games have been used widely in cognitive sci-
ence to study topics like common ground and con-
ventionalization (Clark and Wilkes-Gibbs, 1986),
referential domains (Brown-Schmidt and Tanen-
haus, 2008), perspective-taking (Hanna et al., 2003),
and overinformativeness (Koolen et al., 2011).

To obtain a corpus of natural color reference data
across varying contexts, we recruited 967 unique
participants from Amazon Mechanical Turk to play
1,059 games of 50 rounds each, using the open-



Neural semantics

• We want a flexible, and learnable space 
of meaning functions.

• Use recursive neural net  
(LSTM) from NLP.

• Colors represented in  
3-dim CIELAB color  
space. 

• Text tokenized and  
embedded w/ GloVe.

hsi u1 u2

u1 u2 h/si

Embedding

LSTM

Softmax

Figure 1: Network architecture for language models from
which we sampled to construct utterance priors within
our listener models. The architecture consists of a word
embedding layer followed by an LSTM, and finally a
Softmax over a linear transformation on the LSTM out-
put.

The above relations hold with equality when they
are normalized to form probability distributions.
The top-level l1 listener model estimates the target
referent by computing a pragmatic speaker s1 and a
target prior p(t). Similarly, the pragmatic speaker
s1 computes the appropriate utterance with respect
to a literal listener l0, an utterance prior p(u), and a
rationality hyper-parameter ↵. Finally, the literal lis-
tener computes its expectation about the target ref-
erent according the target prior p(t) along with an
estimate L✓

u,Ot
of the extent to which u applies to Ot

(i.e. according to the literal meaning) under learning
parameters ✓. The target prior, utterance prior, and
literal meanings are computed as follows:

Target prior In both the l0 and l1 distributions, the
target prior p(t) is a uniform distribution over target
possible indices (i.e. with support {1, . . . , | O |}).

Utterance prior The utterances in the reference
games are represented by sequences of English to-
kens, and so a full distribution over all possible ut-
terances is too large to feasibly use as a prior within
our models. We resolve this issue by forming an
utterance prior by sampling from a language model
pre-trained over speaker utterances in the reference
game. In each reference game, we train an LSTM
language model with architecture shown in Figure 1.

Literal meanings The literal meanings L✓
u,Ot

in
l0 are computed by the LSTM architecture shown in
Figure 2. The architecture takes an input utterance

o

u1 u2 u3

L✓
u,o

Tanh

Embedding

LSTM

Sigmoid

Figure 2: Network architecture which computes the lit-
eral meaning L✓

o,u

within our models. The network ap-
plies a single tanh layer to an input object o, and the re-
sult is used as the initial hidden state of the LSTM layer.
The LSTM takes that hidden state along with an embed-
ding of the utterance u. A linear transformation is applied
to the LSTM output, followed by a sigmoid which com-
putes the output L✓

o,u

, representing the degree to which
utterance u applies to object o given the network learning
parameters ✓.

and an object, and outputs a number in (0, 1) repre-
senting the degree to which the utterance applies to
the object.

Given our RSA model, we train the meaning func-
tion parameters ✓ by computing the maximum likeli-
hood estimate (MLE) over the training data for each
game–consisting of labeled examples of the form
(O(r), u(r), t(r))—under the l1 distribution. To com-
pute the MLE, we use the Adam variant of stochas-
tic gradient descent (SGD) implemented in the Py-
Torch neural network library (Kingma and Ba, 2014;
Paszke et al., 2017).1. Our learning model diverges
from (Monroe et al., 2017) in that we train l1 end-
to-end, whereas the prior work computed the MLE
under l0, and then computed an l1 distribution based
on the learned parameters only for evaluation. We
compare to this l0 training as a baseline.

2.1 Batched RSA Network Modules

For our RSA models to train in a reasonable amount
of time, it was necessary to implement vectorized
versions of the the corresponding neural network
modules, and compute their forward passes over
batches of training examples in a somewhat non-
trivial way. In particular, to compute l1 we have a

1The code for our models and experiments is available at
https://github.com/forkunited/ltprg.



Pragmatic training
• RSA is differentiable wrt parameters of 

the meaning function… Can learn by 
gradient descent.

• Approximate the set of utterances via 
sequential Monte Carlo with a pre-trained 
language model prior.
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Figure 1: Network architecture for language models from
which we sampled to construct utterance priors within
our listener models. The architecture consists of a word
embedding layer followed by an LSTM, and finally a
Softmax over a linear transformation on the LSTM out-
put.

The above relations hold with equality when they
are normalized to form probability distributions.
The top-level l1 listener model estimates the target
referent by computing a pragmatic speaker s1 and a
target prior p(t). Similarly, the pragmatic speaker
s1 computes the appropriate utterance with respect
to a literal listener l0, an utterance prior p(u), and a
rationality hyper-parameter ↵. Finally, the literal lis-
tener computes its expectation about the target ref-
erent according the target prior p(t) along with an
estimate L✓

u,Ot
of the extent to which u applies to Ot

(i.e. according to the literal meaning) under learning
parameters ✓. The target prior, utterance prior, and
literal meanings are computed as follows:

Target prior In both the l0 and l1 distributions, the
target prior p(t) is a uniform distribution over target
possible indices (i.e. with support {1, . . . , | O |}).

Utterance prior The utterances in the reference
games are represented by sequences of English to-
kens, and so a full distribution over all possible ut-
terances is too large to feasibly use as a prior within
our models. We resolve this issue by forming an
utterance prior by sampling from a language model
pre-trained over speaker utterances in the reference
game. In each reference game, we train an LSTM
language model with architecture shown in Figure 1.

Literal meanings The literal meanings L✓
u,Ot

in
l0 are computed by the LSTM architecture shown in
Figure 2. The architecture takes an input utterance
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u1 u2 u3
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Tanh
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Figure 2: Network architecture which computes the lit-
eral meaning L✓

o,u

within our models. The network ap-
plies a single tanh layer to an input object o, and the re-
sult is used as the initial hidden state of the LSTM layer.
The LSTM takes that hidden state along with an embed-
ding of the utterance u. A linear transformation is applied
to the LSTM output, followed by a sigmoid which com-
putes the output L✓

o,u

, representing the degree to which
utterance u applies to object o given the network learning
parameters ✓.

and an object, and outputs a number in (0, 1) repre-
senting the degree to which the utterance applies to
the object.

Given our RSA model, we train the meaning func-
tion parameters ✓ by computing the maximum likeli-
hood estimate (MLE) over the training data for each
game–consisting of labeled examples of the form
(O(r), u(r), t(r))—under the l1 distribution. To com-
pute the MLE, we use the Adam variant of stochas-
tic gradient descent (SGD) implemented in the Py-
Torch neural network library (Kingma and Ba, 2014;
Paszke et al., 2017).1. Our learning model diverges
from (Monroe et al., 2017) in that we train l1 end-
to-end, whereas the prior work computed the MLE
under l0, and then computed an l1 distribution based
on the learned parameters only for evaluation. We
compare to this l0 training as a baseline.

2.1 Batched RSA Network Modules

For our RSA models to train in a reasonable amount
of time, it was necessary to implement vectorized
versions of the the corresponding neural network
modules, and compute their forward passes over
batches of training examples in a somewhat non-
trivial way. In particular, to compute l1 we have a

1The code for our models and experiments is available at
https://github.com/forkunited/ltprg.

Learning to Play Reference Games

1 Reference Games

We focus on developing models that learn to play
reference games from observations of humans play.
In these games, one player acts as a “speaker” and
the other acts as a ”listener”. For a round of the
game, both players observe a collection of objects
O. There is one target object Ot that is highlighted
for the speaker player, but its identity is unknown to
the listener. The speaker must produce a description
of Ot to communicate its identity to the listener, so
that the listener can correctly choose it from O.

We use the open source framework of (Hawkins,
2015) on Amazon Mechanical Turk (AMT) to col-
lect training and evaluation data from human players
playing the games. In each reference game, the hu-
man players are recruited to the play several rounds.
The players are randomly sorted into dyads, and
assigned the role of speaker or listener. They ob-
serve the objects by viewing them on their computer
screens, communicate by English text through a chat
box, and the listener picks the target object by click-
ing on it. Both players can communicate through the
chat box at any time, and after the listener clicks the
target, they continue to the next round of the game.

The human play produces a labeled data set
for the development of learning models. A la-
beled training example for a round r has the form
(O(r), U (r), t(r)) where O(r) is the set of objects ob-
served in the round, U (r) is a sequence of utterances
produced by the speaker and listener as they com-
municate about the target, and t(r) is the index of
the target object in O(r).

2 Models

We develop models that learn to play the listener
role in the reference games. In general, we ex-
periment with Rational Speech Acts (RSA) models
(Frank and Goodman, 2012; Goodman and Frank,
2016) whose internal literal semantics is computed
by a recurrent neural network architecture. The RSA
framework allows the listener models to determine
the most likely referent o(r)t of an utterance within
a context O(r) by reasoning recursively about the
speaker intentions with respect to listeners estimates
of the literal meanings of utterances. This recur-
sive reasoning gives the listener model a method by
which to account for the speaker’s context-sensitive,
pragmatic adjustments to the semantic content of the
utterance. As a result, the we can expect our RSA
learning models to outperform non-pragmatic mod-
els which only consider whether utterances apply to
each object individually, independent of the objects
in the surrounding context.

More formally, our pragmatic RSA model l1 with
learning parameters ✓ assumes a distribution over
possible target referents t given an observed con-
text O and speaker utterance u 2 U . For simplicity
and efficiency, we generally pick u to be the final ut-
terance of the utterances for the round U under the
assumption that it is typically the most informative.
The l1 distribution is defined according to:.

l1(t | u,O; ✓) / s1(u | t, O; ✓)p(t)

s1(u | t, O; ✓) / l0(t | u,O; ✓)↵p(u)

l0(t | u,O; ✓) / L✓
u,Ot

p(t)



Pragmatics during training?

• We can use pragmatics during learning 
and/or when model is used at test.

• L0-trained L0: no pragmatics.

• L0-trained L1: pragmatics at test time only.

• L1-trained L1: pragmatics at training and test.



Results, full data

Te
st

 A
cc

ur
ac

y

0.858

0.86

0.862

0.863

0.865

L0-trained L0

L0-trained L1

L1-trained L1

Trained on 15k utterances. McDowell, Goodman (in prep)



Learned meanings

plies to o3 and o4, whereas the l0 training will only
infer that u1 applies to o0 from the first example.
This sort of inference might yield a larger number
of correct predictions and a higher accuracy under
smaller data sizes.

From the third line Figure 4, we see that the end-
to-end l1 training yields a much larger gain in ac-
curacy under impoverished meaning function archi-
tectures. The meaning function architectures used in
the first, second, and fourth line of plots in Figure 4
all have LSTM and embedding layers consisting of
100 hidden units, whereas we use meaning function
architectures with LSTM and embedding layers con-
sisting of 3, 5, 7 and 9 hidden units in the third line of
plots. Just as we observed that the l1 model’s prag-
matic inferences are able to compensate for small
training data, we also see that the pragmatics com-
pensates for coarse-grained literal meanings induced
through weak meaning architectures.

Finally, the fourth line of plots in Figure 4 shows
that the success of pragmatic l1 models over the lit-
eral l0 models depends on using a large enough set of
sampled utterances in the utterance prior. For very
small utterance prior sizes, the l0 model performs
at least as well as the l1 model across conditions,
but for larger utterance priors, the l1 outperforms
the l0 model. We hypothesize that the l1 fails with
small utterance priors due to its inability to estimate
the probability of the speaker’s use of the observed
utterance without reference to a larger set of utter-
ances that apply to both the target and the distractors
within a given context. When only a few utterances
are sampled for the utterance prior, it is unlikely that
the set will be representative for a given context.

4.3.1 Color Extensions

In the previous section, we saw that the end-to-
end trained l1 gives an improvement in performance
over the l0 model, especially under certain training
regimes. Given this observation, we desire some
characterization of how and why the l1 gives this im-
provement. With this aim in mind, we investigated
the literal meanings learned by the various l1 and l0
models under various training conditions.

Figure 5 shows representations of parts of the
meaning functions learned by various models after
7000 training iterations.6 A row of squares in the

6These are not the meaning functions for the models se-

the table gives the meanings learned for by several
models for a single utterance u, and a column rep-
resents the meanings for several utterances under
learned parameters ✓ for a particular model. So, each
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u of u under parame-
ters ✓ with each pixel representing a single color c
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parameters ✓.
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Figure 5: Extensions of various color utterances ac-
cording to the literal meaning functions from various
learned RSA listener models in Hue ⇥ Saturation color
space.8The utterances are (1) blue, (2) purple, (3) green,
(4) orange, (5) red, (6) gray, (7) brown, (8) bright green,
(9) darker green, and (10) brightest.

lected at the best iteration. Nevertheless, the meaning functions
at other iterations for each model are qualitatively similar.
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plies to o3 and o4, whereas the l0 training will only
infer that u1 applies to o0 from the first example.
This sort of inference might yield a larger number
of correct predictions and a higher accuracy under
smaller data sizes.

From the third line Figure 4, we see that the end-
to-end l1 training yields a much larger gain in ac-
curacy under impoverished meaning function archi-
tectures. The meaning function architectures used in
the first, second, and fourth line of plots in Figure 4
all have LSTM and embedding layers consisting of
100 hidden units, whereas we use meaning function
architectures with LSTM and embedding layers con-
sisting of 3, 5, 7 and 9 hidden units in the third line of
plots. Just as we observed that the l1 model’s prag-
matic inferences are able to compensate for small
training data, we also see that the pragmatics com-
pensates for coarse-grained literal meanings induced
through weak meaning architectures.

Finally, the fourth line of plots in Figure 4 shows
that the success of pragmatic l1 models over the lit-
eral l0 models depends on using a large enough set of
sampled utterances in the utterance prior. For very
small utterance prior sizes, the l0 model performs
at least as well as the l1 model across conditions,
but for larger utterance priors, the l1 outperforms
the l0 model. We hypothesize that the l1 fails with
small utterance priors due to its inability to estimate
the probability of the speaker’s use of the observed
utterance without reference to a larger set of utter-
ances that apply to both the target and the distractors
within a given context. When only a few utterances
are sampled for the utterance prior, it is unlikely that
the set will be representative for a given context.

4.3.1 Color Extensions

In the previous section, we saw that the end-to-
end trained l1 gives an improvement in performance
over the l0 model, especially under certain training
regimes. Given this observation, we desire some
characterization of how and why the l1 gives this im-
provement. With this aim in mind, we investigated
the literal meanings learned by the various l1 and l0
models under various training conditions.

Figure 5 shows representations of parts of the
meaning functions learned by various models after
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Figure 5: Extensions of various color utterances ac-
cording to the literal meaning functions from various
learned RSA listener models in Hue ⇥ Saturation color
space.8The utterances are (1) blue, (2) purple, (3) green,
(4) orange, (5) red, (6) gray, (7) brown, (8) bright green,
(9) darker green, and (10) brightest.

lected at the best iteration. Nevertheless, the meaning functions
at other iterations for each model are qualitatively similar.

“Red”
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plies to o3 and o4, whereas the l0 training will only
infer that u1 applies to o0 from the first example.
This sort of inference might yield a larger number
of correct predictions and a higher accuracy under
smaller data sizes.

From the third line Figure 4, we see that the end-
to-end l1 training yields a much larger gain in ac-
curacy under impoverished meaning function archi-
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the l0 model. We hypothesize that the l1 fails with
small utterance priors due to its inability to estimate
the probability of the speaker’s use of the observed
utterance without reference to a larger set of utter-
ances that apply to both the target and the distractors
within a given context. When only a few utterances
are sampled for the utterance prior, it is unlikely that
the set will be representative for a given context.

4.3.1 Color Extensions

In the previous section, we saw that the end-to-
end trained l1 gives an improvement in performance
over the l0 model, especially under certain training
regimes. Given this observation, we desire some
characterization of how and why the l1 gives this im-
provement. With this aim in mind, we investigated
the literal meanings learned by the various l1 and l0
models under various training conditions.

Figure 5 shows representations of parts of the
meaning functions learned by various models after
7000 training iterations.6 A row of squares in the
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Figure 5: Extensions of various color utterances ac-
cording to the literal meaning functions from various
learned RSA listener models in Hue ⇥ Saturation color
space.8The utterances are (1) blue, (2) purple, (3) green,
(4) orange, (5) red, (6) gray, (7) brown, (8) bright green,
(9) darker green, and (10) brightest.

lected at the best iteration. Nevertheless, the meaning functions
at other iterations for each model are qualitatively similar.

plies to o3 and o4, whereas the l0 training will only
infer that u1 applies to o0 from the first example.
This sort of inference might yield a larger number
of correct predictions and a higher accuracy under
smaller data sizes.

From the third line Figure 4, we see that the end-
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the first, second, and fourth line of plots in Figure 4
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sisting of 3, 5, 7 and 9 hidden units in the third line of
plots. Just as we observed that the l1 model’s prag-
matic inferences are able to compensate for small
training data, we also see that the pragmatics com-
pensates for coarse-grained literal meanings induced
through weak meaning architectures.

Finally, the fourth line of plots in Figure 4 shows
that the success of pragmatic l1 models over the lit-
eral l0 models depends on using a large enough set of
sampled utterances in the utterance prior. For very
small utterance prior sizes, the l0 model performs
at least as well as the l1 model across conditions,
but for larger utterance priors, the l1 outperforms
the l0 model. We hypothesize that the l1 fails with
small utterance priors due to its inability to estimate
the probability of the speaker’s use of the observed
utterance without reference to a larger set of utter-
ances that apply to both the target and the distractors
within a given context. When only a few utterances
are sampled for the utterance prior, it is unlikely that
the set will be representative for a given context.

4.3.1 Color Extensions

In the previous section, we saw that the end-to-
end trained l1 gives an improvement in performance
over the l0 model, especially under certain training
regimes. Given this observation, we desire some
characterization of how and why the l1 gives this im-
provement. With this aim in mind, we investigated
the literal meanings learned by the various l1 and l0
models under various training conditions.

Figure 5 shows representations of parts of the
meaning functions learned by various models after
7000 training iterations.6 A row of squares in the

6These are not the meaning functions for the models se-

the table gives the meanings learned for by several
models for a single utterance u, and a column rep-
resents the meanings for several utterances under
learned parameters ✓ for a particular model. So, each
square shows the extension L✓

u of u under parame-
ters ✓ with each pixel representing a single color c
within a Hue⇥Saturation color space. The darkness
of the pixel for c gives the value of L✓

u,c—the degree
to which u applies to c according to the model with
parameters ✓.
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Figure 5: Extensions of various color utterances ac-
cording to the literal meaning functions from various
learned RSA listener models in Hue ⇥ Saturation color
space.8The utterances are (1) blue, (2) purple, (3) green,
(4) orange, (5) red, (6) gray, (7) brown, (8) bright green,
(9) darker green, and (10) brightest.

lected at the best iteration. Nevertheless, the meaning functions
at other iterations for each model are qualitatively similar.
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Trained on 128 utterances. McDowell, Goodman (in prep)



Transfer to new domains

Top 5 matches Lowest 5 matches

curved back

has thin legs

has two slats

has pillows and 
armrests

Using trained (L0) listener to search for 
best exemplar from all chairs in ShapeNet:

Query: “Tall legs”

Highest scoring

Lowest scoring

Same listener seems to work for tables:
Query: “antique old”

Highest scoring

Lowest scoring



Incremental pragmatics
• We can read-out early from the neural 

semantics, applying RSA to get informativity of 
partial utterances.

hsi u1 u2

u1 u2 h/si

Embedding

LSTM

Softmax

Figure 1: Network architecture for language models from
which we sampled to construct utterance priors within
our listener models. The architecture consists of a word
embedding layer followed by an LSTM, and finally a
Softmax over a linear transformation on the LSTM out-
put.

The above relations hold with equality when they
are normalized to form probability distributions.
The top-level l1 listener model estimates the target
referent by computing a pragmatic speaker s1 and a
target prior p(t). Similarly, the pragmatic speaker
s1 computes the appropriate utterance with respect
to a literal listener l0, an utterance prior p(u), and a
rationality hyper-parameter ↵. Finally, the literal lis-
tener computes its expectation about the target ref-
erent according the target prior p(t) along with an
estimate L✓

u,Ot
of the extent to which u applies to Ot

(i.e. according to the literal meaning) under learning
parameters ✓. The target prior, utterance prior, and
literal meanings are computed as follows:

Target prior In both the l0 and l1 distributions, the
target prior p(t) is a uniform distribution over target
possible indices (i.e. with support {1, . . . , | O |}).

Utterance prior The utterances in the reference
games are represented by sequences of English to-
kens, and so a full distribution over all possible ut-
terances is too large to feasibly use as a prior within
our models. We resolve this issue by forming an
utterance prior by sampling from a language model
pre-trained over speaker utterances in the reference
game. In each reference game, we train an LSTM
language model with architecture shown in Figure 1.

Literal meanings The literal meanings L✓
u,Ot

in
l0 are computed by the LSTM architecture shown in
Figure 2. The architecture takes an input utterance

o

u1 u2 u3

L✓
u,o

Tanh

Embedding

LSTM

Sigmoid

Figure 2: Network architecture which computes the lit-
eral meaning L✓

o,u

within our models. The network ap-
plies a single tanh layer to an input object o, and the re-
sult is used as the initial hidden state of the LSTM layer.
The LSTM takes that hidden state along with an embed-
ding of the utterance u. A linear transformation is applied
to the LSTM output, followed by a sigmoid which com-
putes the output L✓

o,u

, representing the degree to which
utterance u applies to object o given the network learning
parameters ✓.

and an object, and outputs a number in (0, 1) repre-
senting the degree to which the utterance applies to
the object.

Given our RSA model, we train the meaning func-
tion parameters ✓ by computing the maximum likeli-
hood estimate (MLE) over the training data for each
game–consisting of labeled examples of the form
(O(r), u(r), t(r))—under the l1 distribution. To com-
pute the MLE, we use the Adam variant of stochas-
tic gradient descent (SGD) implemented in the Py-
Torch neural network library (Kingma and Ba, 2014;
Paszke et al., 2017).1. Our learning model diverges
from (Monroe et al., 2017) in that we train l1 end-
to-end, whereas the prior work computed the MLE
under l0, and then computed an l1 distribution based
on the learned parameters only for evaluation. We
compare to this l0 training as a baseline.

2.1 Batched RSA Network Modules

For our RSA models to train in a reasonable amount
of time, it was necessary to implement vectorized
versions of the the corresponding neural network
modules, and compute their forward passes over
batches of training examples in a somewhat non-
trivial way. In particular, to compute l1 we have a

1The code for our models and experiments is available at
https://github.com/forkunited/ltprg.
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The above relations hold with equality when they
are normalized to form probability distributions.
The top-level l1 listener model estimates the target
referent by computing a pragmatic speaker s1 and a
target prior p(t). Similarly, the pragmatic speaker
s1 computes the appropriate utterance with respect
to a literal listener l0, an utterance prior p(u), and a
rationality hyper-parameter ↵. Finally, the literal lis-
tener computes its expectation about the target ref-
erent according the target prior p(t) along with an
estimate L✓
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of the extent to which u applies to Ot

(i.e. according to the literal meaning) under learning
parameters ✓. The target prior, utterance prior, and
literal meanings are computed as follows:

Target prior In both the l0 and l1 distributions, the
target prior p(t) is a uniform distribution over target
possible indices (i.e. with support {1, . . . , | O |}).

Utterance prior The utterances in the reference
games are represented by sequences of English to-
kens, and so a full distribution over all possible ut-
terances is too large to feasibly use as a prior within
our models. We resolve this issue by forming an
utterance prior by sampling from a language model
pre-trained over speaker utterances in the reference
game. In each reference game, we train an LSTM
language model with architecture shown in Figure 1.

Literal meanings The literal meanings L✓
u,Ot

in
l0 are computed by the LSTM architecture shown in
Figure 2. The architecture takes an input utterance

o

u1 u2 u3

L✓
u,o

Tanh

Embedding

LSTM

Sigmoid

Figure 2: Network architecture which computes the lit-
eral meaning L✓

o,u

within our models. The network ap-
plies a single tanh layer to an input object o, and the re-
sult is used as the initial hidden state of the LSTM layer.
The LSTM takes that hidden state along with an embed-
ding of the utterance u. A linear transformation is applied
to the LSTM output, followed by a sigmoid which com-
putes the output L✓

o,u

, representing the degree to which
utterance u applies to object o given the network learning
parameters ✓.

and an object, and outputs a number in (0, 1) repre-
senting the degree to which the utterance applies to
the object.

Given our RSA model, we train the meaning func-
tion parameters ✓ by computing the maximum likeli-
hood estimate (MLE) over the training data for each
game–consisting of labeled examples of the form
(O(r), u(r), t(r))—under the l1 distribution. To com-
pute the MLE, we use the Adam variant of stochas-
tic gradient descent (SGD) implemented in the Py-
Torch neural network library (Kingma and Ba, 2014;
Paszke et al., 2017).1. Our learning model diverges
from (Monroe et al., 2017) in that we train l1 end-
to-end, whereas the prior work computed the MLE
under l0, and then computed an l1 distribution based
on the learned parameters only for evaluation. We
compare to this l0 training as a baseline.

2.1 Batched RSA Network Modules

For our RSA models to train in a reasonable amount
of time, it was necessary to implement vectorized
versions of the the corresponding neural network
modules, and compute their forward passes over
batches of training examples in a somewhat non-
trivial way. In particular, to compute l1 we have a

1The code for our models and experiments is available at
https://github.com/forkunited/ltprg.

These 
representations have 
same type, allowing 

“early” semantic 
interpretation

Cohn-Gordon, Potts, Goodman (2018) 



Incremental pragmatics
• This even works character-by-character.

• Perhaps related to human incremental 
utterance processing?

to obtain global pragmatic effects from local de-
cisions. We show that such character-level RSA
speakers are more effective than literal captioning
systems at the task of helping a reader identify the
target image among close competitors, and outper-
form word-level RSA captioners in both efficiency
and accuracy.

2 Bayesian Pragmatics for Captioning

In applying RSA to image captioning, we think
of captioning as a kind of reference game. The
speaker and listener are in a shared context con-
sisting of a set of images W , the speaker is pri-
vately assigned a target image w⇤ 2 W , and the
speaker’s goal is to produce a caption that will en-
able the listener to identify w⇤. U is the set of
possible utterances. In its simplest form, the lit-

eral speaker is a conditional distribution S0(u|w)
assigning equal probability to all true utterances
u 2 U and 0 to all others. The pragmatic listener
L0 is then defined in terms of this literal agent and
a prior P (w) over possible images:

L0(w|u) /
S0(u|w) ⇤ P (w)P

w02W S0(u|w0) ⇤ P (w0)
(1)

The pragmatic speaker S1 is then defined in terms
of this pragmatic listener, with the addition of a ra-
tionality parameter ↵ > 0 governing how much it
takes into account the L0 distribution when choos-
ing utterances. P (u) is here taken to be a uniform
distribution over U :

S1(u|w) /
L0(w|u)↵ ⇤ P (u)P

u02U L0(w|u0)↵ ⇤ P (u0)
(2)

As a result of this back-and-forth, the S1 speaker is
reasoning not merely about what is true, but rather
about a listener reasoning about a literal speaker
who reasons about truth.

To illustrate, consider the pair of images 2a and
2b in Figure 2. Suppose that U = {bus, red bus}.
Then the literal speaker S0 is equally likely to
produce bus and red bus when the left image 2a
is the target. However, L0 breaks this symme-
try; because red bus is false of the right bus,
L0(2a|bus) = 1

3 and L0(2b|bus) = 2
3 . The S1

speaker therefore ends up favoring red bus when
trying to convey 2a, so that S1(red bus|2a) = 3

4
and S1(bus|2a) = 1

4 .

Figure 2: Captions for the target image (in green).

3 Applying Bayesian Pragmatics to a
Neural Semantics

To apply the RSA model to image captioning, we
first train a neural model with a CNN-RNN archi-
tecture (Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015). The trained model can be considered an
S0-style distribution P (caption|image) on top of
which further listeners and speakers can be built.
(Unlike the idealized S0 described above, a neu-
ral S0 will assign some probability to untrue utter-
ances.)

The main challenge for this application is that
the space of utterances (captions) U will be very
large for any suitable captioning system, making
the calculation of S1 intractable due to its normal-
ization over all utterances. The question, there-
fore, is how best to approximate this inference.
The solution employed by Monroe et al. (2017)
and Andreas and Klein (2016) is to sample a small
subset of probable utterances from the S0, as an
approximate prior upon which exact inference can
be performed. While tractable, this approach has
the shortcoming of only considering a small part
of the true prior, which potentially decreases the
extent to which pragmatic reasoning will be able
to apply. In particular, if a useful caption never
appears in the sampled prior, it cannot appear in
the posterior.

3.1 Step-Wise Inference

Inspired by the success of the “emittor-
suppressor” method of Vedantam et al. (2017),
we propose an incremental version of RSA.
Rather than performing a single inference over
utterances, we perform an inference for each step

of the unrolling of the utterance.
We use a character-level LSTM, which defines

a distribution over characters P (u|pc, image),
where pc (“partial caption”) is a string of char-

Cohn-Gordon, Potts, Goodman (2018) 

municate’ better with itself using its own language
than with others”. In evaluation, we therefore split
the training data in half, with one part for training
the S0 used in the caption generation model S1

and one part for training the S0 used in the caption
evaluation model L

eval

.
We say that the caption succeeds as a referring

expression if the target has more probability mass
under the distribution L

eval

(image|caption) than
any distractor.

Dataset We train our production and evaluation
models on separate sets consisting of regions in
the Visual Genome dataset (Krishna et al., 2017)
and full images in MSCOCO (Chen et al., 2015).
Both datasets consist of over 100,000 images of
common objects and scenes. MSCOCO provides
captions for whole images, while Visual Genome
provides captions for regions within images.

Our test sets consist of clusters of 10 images.
For a given cluster, we set each image in it as the
target, in turn. We use two test sets. Test set 1
(TS1) consists of 100 clusters of images, 10 for
each of the 10 most common objects in Visual
Genome.3 Test set 2 (TS2) consists of regions in
Visual Genome images whose ground truth cap-
tions have high word overlap, an indicator that
they are similar. We again select 100 clusters of
10. Both test sets have 1,000 items in total (10
potential target images for each of 100 clusters).

Captioning System Our neural image caption-
ing system is a CNN-RNN architecture4 adapted
to use a character-based LSTM for the language
model.

Hyperparameters We use a beam search with
width 10 to produce captions, and a rationality pa-
rameter of ↵ = 5.0 for the S1.

4.2 Results

As shown in Table 1, the character-level S1 obtains
higher accuracy (68% on TS1 and 65.9% on TS2)
than the S0 (48.9% on TS1 and 47.5% on TS2),
demonstrating that S1 is better than S0 at referring.

Advantage of Incremental RSA We also ob-
serve that 66% percent of the times in which the
S1 caption is referentially successful and the S0

3Namely, man, person, woman, building, sign, table, bus,
window, sky, and tree.

4
https://github.com/yunjey/

pytorch-tutorial/tree/master/tutorials/

03-advanced/image_captioning

Model TS1 TS2

Char S0 48.9 47.5
Char S1 68.0 65.9
Word S0 57.6 53.4
Word S1 60.6 57.6

Table 1: Accuracy on both test sets.

caption is not, for a given image, the S1 caption is
not one of the top 50 S0 captions, as generated by
the beam search unrolling at S0. This means that
in these cases the non-incremental RSA method
of Andreas and Klein (2016) could not have gen-
erated the S1 caption, if these top 50 S0 captions
were the support of the prior over utterances.

Comparison to Word-Level RSA We compare
the performance of our character-level model to a
word-level model.5 This model is incremental in
precisely the way defined in section 3.2, but uses a
word-level LSTM so that u 2 U are words and U
is a vocabulary of English. It is evaluated with an
Leval model that also operates on the word level.

Though the word S0 performs better on both test
sets than the character S0, the character S1 outper-
forms the word S1, demonstrating the advantage
of a character-level model for pragmatic behavior.
We conjecture that the superiority of the character-
level model is the result of the increased number
of decisions where pragmatics can be taken into
account, but leave further examination for future
research.

Variants of the Model We further explore the
effect of two design decisions in the character-
level model. First, we consider a variant of S1

which has a prior over utterances determined by
an LSTM language model trained on the full set
of captions. This achieves an accuracy of 67.2%
on TS1. Second, we consider our standard S1 but
with unrolling such that the L0 prior is drawn uni-
formly at each timestep rather than determined by
the L0 posterior at the previous step. This achieves
an accuracy of 67.4% on TS1. This suggests that
neither this change of S1 nor L0 priors has a large
effect on the performance of the model.

5Here, we use greedy unrolling, for reasons of efficiency
due to the size of U for the word-level model, and set ↵ = 1.0
from tuning on validation data. For comparison, we note that
greedy character-level S1 achieves an accuracy of 61.2% on
TS1.

Model
Test 

accuracy

Rubio-Fernandez 2016
“the red dress”>”el vestido rojo”

The
red

dress

dress

El vestido
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Learning from language

• Language is a unique opportunity for 
learning.

• The predictive content of a great deal of 
direct experience can be conveyed in a 
sentence.

• This may be central to the “cultural ratchet”, 
enabling the unique successes of our species.

“Red-spotted mushrooms 
are poisonous.”

“Lightning causes fires.”

“Feps are gentle.”



Generalizations

• Category generics seem to convey 
generalizations. What do they actually 
mean?

• Probability is a universal currency of 
belief, useful in describing human 
generalization from examples. (Cf. Shepard, 
1987; Tenenbaum & Griffiths, 2001) 

• So, maybe generics refer to probability?

Robins lay eggs.
Ravens are black.

Mosquitos carry malaria.

Tessler and Goodman (in prep)



Generalizations

[[Ravens are black]] := {P (is black | is a raven) > ✓}

feature kind

[[Some ravens are black]] := {P (is black | is a raven) > 0}
[[Most ravens are black]] := {P (is black | is a raven) > 0.5}
[[All ravens are black]] := {P (is black | is a raven) = 1}



Robins lay eggs.

Robins are female.

50%

50% ✕

✓

Mosquitos carry malaria.< 1% ✓

feature kind

[[generalization]] := {P (f | k) > ✓}

Ravens are black.> 99% ✓



A vague semantics

L0(p|u) / P (p)L(p, u)

p = P (f | k) = prevalence

L(p, “k f”) = p

S1(u|p) / L0(p|u)↵

L(p, “...”) = 1

The generic utterance is true proportionally 
to the prevalence probability*:

Standard RSA listener interprets utterance:

Endorsement is modeled as speaker’s decision to 
utter the generic vs staying silent (Cf. Franke, 2014; Degen & 

Goodman, 2014):

u 2 {generalization, null}
L(p, “k f”) = p

*This is equivalent to a simple uniformly uncertain threshold semantics.



Prevalence priors

Think of some kind of animal.

What percentage lay eggs?
What percentage are female?

Background knowledge: a prior 
distribution on prevalence

L0(p|u) / P (p)L(p, u)
p = P (f | k)



% lays eggs

Hypothetical prevalence priors

% carries malaria



n = 60 from Amazon’s Mechanical Turk

Prior elicitation
A BA B

Category elicitation Prevalence elicitation

supplied to  
participants

participants 
generate 

animal kinds



have beautiful feathers have spots have wings lay eggs

are female are red carry malaria dont eat people

0 1 0 1 0 1 0 1

0

1

0

1

Human prevalence rating
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d 
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ob
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have beautiful feathers have spots have wings lay eggs

are female are red carry malaria dont eat people

0 1 0 1 0 1 0 1

0

1

0

1
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have beautiful feathers have spots have wings lay eggs

are female are red carry malaria dont eat people

0 1 0 1 0 1 0 1

0

1

0

1

N
or

m
al

ize
d 

pr
ob

ab
ilit

y 
de

ns
ity

21 properties in total

filtering 0% responses



half of robins  
lay eggs

referent 
prevalence

prevalence  
prior

Prevalence elicitation task

robins lay eggs Endorsement task

intuitive theory



Endorsement task (Generics)

30 items in total

items selected from the linguistic literature +  
cover different “conceptual distinctions” (Prasada et al., 2013)



Lions lay eggs.
Leopards have wings.

Peacocks dont have beautiful feathers.
Ticks dont carry Lyme disease.

Robins carry malaria.
Mosquitos dont carry malaria.

Sharks lay eggs.
Leopards are juvenile.

Sharks dont attack swimmers.
Tigers dont eat people.

Sharks are white.
Mosquitos attack swimmers.

Robins are female.
Lions are male.

Tigers eat people.
Swans are full−grown.

Sharks attack swimmers.
Swans are white.

Lions have manes.
Robins lay eggs.

Kangaroos have pouches.
Ticks carry Lyme disease.

Mosquitos carry malaria.
Cardinals are red.

0 0.5 1
Human endorsement

0 1
Referent Prevalence

similar in 5-year-olds: Brandone et al. (2012)

error bars = 95% Bayesian credible intervals



0

1

0 1
Model prediction
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Referent prevalence

Simple statistical hypothesis 
Linear model: Referent prevalence

Leopards have spots.Robins lay eggs.

Tigers don’t eat people.

Mosquitos carry malaria.

Lions lay eggs.
Leopards have wings.

Peacocks dont have beautiful feathers.
Ticks dont carry Lyme disease.

Robins carry malaria.
Mosquitos dont carry malaria.

Sharks lay eggs.
Leopards are juvenile.

Sharks dont attack swimmers.
Tigers dont eat people.

Sharks are white.
Mosquitos attack swimmers.

Robins are female.
Lions are male.

Tigers eat people.
Swans are full−grown.

Sharks attack swimmers.
Swans are white.

Lions have manes.
Robins lay eggs.

Kangaroos have pouches.
Ticks carry Lyme disease.

Mosquitos carry malaria.
Cardinals are red.

0 0.5 1
Human endorsement

0 1
Referent Prevalence

Lions have wings.

r2(30) = 0.59
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Model prediction
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Referent prevalence

Simple statistical hypothesis 
Linear model: Referent prevalence

Lions lay eggs.
Leopards have wings.

Peacocks dont have beautiful feathers.
Ticks dont carry Lyme disease.

Robins carry malaria.
Mosquitos dont carry malaria.

Sharks lay eggs.
Leopards are juvenile.

Sharks dont attack swimmers.
Tigers dont eat people.

Sharks are white.
Mosquitos attack swimmers.

Robins are female.
Lions are male.

Tigers eat people.
Swans are full−grown.

Sharks attack swimmers.
Swans are white.

Lions have manes.
Robins lay eggs.

Kangaroos have pouches.
Ticks carry Lyme disease.

Mosquitos carry malaria.
Cardinals are red.

0 0.5 1
Human endorsement

0 1
Referent Prevalencer2(30) = 0.59

Endorsement model  
Probability, vagueness, & context

0
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0 1
Model prediction
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r2(30) = 0.98
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Referent prevalence

Simple statistical hypothesis 
Linear model: Referent prevalence

r2(30) = 0.59

Endorsement model  
Probability, vagueness, & context

0

1

0 1
Model prediction
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r2(30) = 0.98

0
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0 1
Model prediction
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Alternative statistical hypothesis 
Referent prevalence + cue validity

r2(30) = 0.79

Lesioned endorsement model 
Fixed prevalence threshold
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Model prediction
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r2(30) = 0.93



Conceptual structure

LAY EGGS

Leslie (2007), Prasada & Dillingham (2013),  
Cimpian, Gelman, et al.

•  “Birds lay eggs” conveys the reproductive capacity of birds

Different KIND—PROPERTY relations give rise to different prevalence priors

•  Generic understanding has to do with KIND—PROPERTY relations

ROBIN REPRODUCTION



Case studies of 
generalization

Categories  
(generics)

Events  
(habituals)

Causes  
(causals)

Example Robins lay eggs John smokes Drinking moonshine 
makes you go blind

Generalizing over Individual robins John at 
particular times

Instance of moonshine 
causing blindness

Prevalence prior Measured Measured Manipulated

Referent prevalence Measured Manipulated Manipulated

Language of generalization

Tessler and Goodman (in prep)
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