Iris van Rooij
Computational
Cognitive Science

Work with
Mark Blokpoel
Johan Kwisthout
Todd Wareham
Maria Otworowska
Iris van der Pol
Jakub Szymanik
Ronald de Haan

Why cognitive scientists should care about computational complexity

Inspiration

Why Philosophers Should Care About Computational Complexity

Scott Aaronson

One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory - the field that studies the resources (such as time, space, and randomness) needed to solve computational problems-leads to new perspectives (...) the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality (...).

Inspiration

Why Philosophers Should Care About Computational Complexity

Scott Aaronson

One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory - the field that studies the resources (such as time, space, and randomness) needed to solve computational problems-leads to new perspectives on (...) the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality (...)

Why Cognitive Scientists Should Care About Computational Complexity

Iris van Rooij

You may think you need not care much.
But you'd be wrong.

Water lilies

Pick the option closest to your intuition (no calculations please).
(1) Smaller than any below
(2) Bath tub
(3) Duck pond
(4) Soccer field
(5) Lake
(6) Sea
(7) Ocean
(8) Larger than any above

Water Iilies

Poll results for the waterlily problem

Intuitions can be mistaken

Intuitions can be mistaken

- Whether or not models scale to the real world?
- One may incorrectly intuit that if a model works for a toy domain then it will work (approximately) in the real world.
- What will make models scale better?
- One may incorrectly intuit that satisficing, heuristics, modularity, extended cognition, etc. etc. can make intractable computations scale (approximately).

Scaling models of cognition

Communication

Scaling models of cognition

Navigation (Robotics)

experimentation

Scaling models of cognition

Action understanding

Navigation (Robotics)

Scaling models of cognition

What is Intractability? And why is it a problem?

"The computations postulated by a model of cognition need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NPhard models that lead to computational explosion." (Gigerenzer et al., 2008)

What is Intractability? And why is it a problem?

"The computations postulated by a model of cognition need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NPhard models that lead to computational explosion." (Gigerenzer et al., 2008)

Cognitive explanation: 3 Levels of Marr

Level	Marr's levels	Question
1	Computational	What?
2	Algorithm	How?
3	Implementation	Realisation?

Cognitive explanation: 3 Levels of Marr

Level	Marr's levels	Question
1	Computational	What?
2	Algorithm	How?
3	Implementation	Realisation?

Computational-level Models of Cognition

Computational-level Models of Cognition

Computational-level Models of Cognition

Computational-level Models of Cognition

Computational-level Models of Cognition

What is Intractability? And why is it a problem?

"The computations postulated by a model of cognition need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NP-
hard models that lead to computational
explosion." (Gigerenzer et al., 2008)

Why NP-hard is considered intractable

NP-hard functions cannot be computed in polynomial time (assuming $P \neq N P$). Instead they require exponential time (or worse) for their computation, which is why they are considered intractable (in other words, unrealistic to compute for all but small inputs).

n	n^{2}
5	0.15 msec
20	0.04 sec
50	0.25 sec
100	1.00 sec
1000	1.67 min

n	2^{n}
5	0.19 msec
20	1.75 min
50	$8.4 \times 10^{2} \mathrm{yrs}$
100	$9.4 \times 10^{17} \mathrm{yrs}$
1000	$7.9 \times 10^{288} \mathrm{yrs}$

Invariance Thesis

What is Intractability? And why is it a problem?

"The computations postulated by a model of cognition need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NPhard models that lead to computational explosion." (Gigerenzer et al., 2008)

The Problem

The Problem

Intractability is Ubiquitous

" ...it is very widely assumed on inductive grounds by those who model cognitive processes that pretty much any interesting computational problem is super-polynomial in the worst case." (Samuels, 2005)

Table 1. Examples of (purportedly) intractable computational-level theories

Cognitive domain	Cognitive model	References
Analogy	Structure-mapping theory	Gentner (1985)
Belief Fixation	Maximum aposterior probability	Abdelbar \& Hedetniemi (1998)
Belief Fixation	Constraint satisfaction	Thagard (2000)
Belief Revision	Default logic	Reiter (1980)
Belief Revision	Bayesian belief updating	Cooper (1990)
Categorization	Simplicity model	Pothos \& Chater (2001, 2002)
Decision-making	Bayesian decision-making	Dayan \& Daw (2008)
Decision-making	Subset choice	van Rooij et al. (2005)
Language	Grammar learning	Ristad (1990)
Network learning	Weight assignment	Judd (1990)
Network settling	Harmony maximization	Bruck \& Goodman (1990)
Planning	STRIPS	Bylander (1994)
Similarity	Representational Distortion	Hahn et al. (2005)
Vision	Structural information theory	van der Helm (2004)
Vision	Bottom-up visual matching	Tsotsos (1991)

How have cognitive scientists (not) been dealing with intractability?

How have cognitive scientists (not) been dealing with intractability?

- "Figure pointing"
- Framework rejection
van Rooij (2008) Cognitive Science
van Rooij (2015) Proceedings of CogSci2015.

S such that
(1) $\mathrm{S} \& \mathrm{~T}$ is consistent
(2) $\mathrm{S} \& \mathrm{~T}$ implies M .

0

Radboud University Nijmegen重

Cognitive Science. van Rooij et al. (2012, 2014).

Synthese.

Otworowska et al. (2017)
Cognitive Science.

How have cognitive scientists have (not) been dealing with intractability?

- Average-case Objection
- Super-human Objection
- Parallelism Objection
- Quantum Computing Objection
- Heuristics Objection
- Approximation Objection
- etc. etc. etc.
van Rooij (2008) Cognitive Science van Rooij et al. (2012) Synthese.

Heuristics as a Coping Strategy

Computational-level

Algorithmic-level

Heuristics as a Coping Strategy

Computational-level

Algorithmic-level
input $\mathrm{i} \longrightarrow$

Heuristics as a Coping Strategy

Computational-level

Algorithmic-level

Heuristics: The Wrong Way of Coping

Computational-level

Algorithmic-level

Approximation as a Coping Strategy

Computational-level

Algorithmic-level
input $i \longrightarrow \begin{gathered}\text { tractable } \\ \text { algorithm } A\end{gathered} \longrightarrow$ output $A(i) \approx f(i)$

Approximation is often also intractable

Approximating Bayesian inference is intractable, e.g., the following senses:

- Computing a truth assignment that has close to maximal probability is NP-hard (Kwisthout, 2011)
- Computing a truth assignment with a posterior probability of at least q for any value $0<q<1$ is NPhard. (Kwisthout, 2011)
- Computing a truth assignment that resembles the most probable truth assignment is NP-hard (Kwisthout, 2014)

How could cognitive scientists be dealing with intractability?

The parameterized approach to dealing with intractability

Step 1. Identify parameters of the model that are sources of intractability.

$$
\exp (n) \longrightarrow \exp \left(k_{1}, k_{2}, \ldots k_{m}\right) \operatorname{poly}(n)
$$

Bayesian inference

What parameters can you think of?

The parameterized approach to dealing with intractability

Step 1. Identify parameters of the model that are sources of intractability.
$\exp (n) \longrightarrow \exp \left(k_{1} 0_{2}, a_{n}\right)$ poly (n)

Bayesian inference

What parameters can you think of?

The parameterized approach to dealing with intractability

Step 1. Identify parameters of the model that are sources of intractability.

$$
\exp (n) \longrightarrow \exp \left(k_{1}, k_{2}, \ldots k_{m}\right) \operatorname{poly}(n)
$$

Bayesian inference

What parameters can you think of?

The parameterized approach to dealing with intractability

Step 1. Identify parameters of the model that are sources of intractability.

```
exp(n)\longrightarrow\operatorname{exp}(\mp@subsup{k}{1}{},\mp@subsup{k}{2}{2},..\mp@subsup{k}{m}{})\operatorname{poly}(n)
```

Step 2. Constrain the model to small values for the parameters $k_{1}, k_{2}, \ldots k_{m}$. (Note: n can still be large!)

The parameterized approach to dealing with intractability

Step 1. Identify parameters of the model that are sources of intractability.
$\exp (n) \longrightarrow \exp \left(k_{1}, k_{2} \ldots k_{m}\right)$ poly (n)

Step 2. Constrain the model to small values for the parameters $k_{1}, k_{2}, \ldots k_{m}$. (Note: n can still be large!)

Step 3 (validation): Verify that the constraints hold for humans in real-life situations, and test in lab if performance breaks down when parameters are large.

Conclusions

Cognitive Scientists Should Care about Computational Complexity

Why?

1. Intractability prohibits models to scale to the real world.
2. Our intuitions about intractability can be wrong.
3. We need the formal tools from computational complexity theory to verify our intuitions and constrain our models.

Thank You!

To appear in Spring 2019, Cambridge Univ. Press

Cognition \& Intractability
 A Guide to Classical and Parameterized Complexity Analysis with Mark Blokpoel, Johan Kwisthout \& Todd Wareham

