

Sonderforschungsbereich 595

Elektrische Ermüdung in Funktionswerkstoffen

TECHNISCHE UNIVERSITÄT DARMSTADT

Sonderkolloquium Sommersemester 2011

Prof. Xiaoli Tan

06.04. 2011 Department of Materials Science and Engineering, Iowa State University, USA

Transitions of Domains and Phases in (Bi_{1/2}Na_{1/2})TiO₃–BaTiO₃ Ceramics Driven by Composition, Temperature, and E-Field

The structure-property relationship in the unpoled $(1-x)(Bi_{1/2}Na_{1/2})TiO_3 - xBaTiO_3$ ceramics was studied using transmission electron microscopy (TEM) and dielectric characterization. In contrast to the reported phase diagrams determined using poled ceramics, an additional phase region exhibiting *P4bm* nanodomains was revealed at room temperature around the x = 0.06 morphotropic phase boundary, where optimal properties are obtained. In combination with dielectric characterizations, the hot-stage and room-temperature TEM study suggest an excellent structure-property correlation below 250 °C. The P4bm nanodomains are associated with the "relaxor antiferroelectric" behavior, which is a new concept proposed in this study to describe the unique short-range-ordered antiferroelectric behavior, while large ferroelectric domains give rise to long-range-ordered ferroelectric behaviors. In contrast to the sharpness of the corresponding dielectric anomaly, the structural transition between large ferroelectric domains and *P4bm* nanodomains occurs gradually in a temperature range of several tens of degrees. The results are summarized as an updated phase diagram for unpoled $(1-x)(Bi_{1/2}Na_{1/2})TiO_3 - xBaTiO_3$ ceramics. The 0.93(Bi_{1/2}Na_{1/2})TiO₃-0.07BaTiO₃ ceramic was further investigated with the E-field in

The 0.93(Bi_{1/2}Na_{1/2}) ΠO_3 -0.07Ba ΠO_3 ceramic was further investigated with the E-field *in* situ TEM technique. The transition of the nanodomains of the relaxor antiferroelectric *P4bm* phase to the lamellar microdomains of the ferroelectric *P4mm* phase was revealed for the first time. When the applied field increased further, the coalescence of lamellar microdomains into a huge *P4mm* domain was also recorded. Our results directly confirmed the occurrence of an E-field induced phase transition during the poling process in morphotropic phase boundary compositions of the (1-x)(Bi_{1/2}Na_{1/2})TiO₃-xBaTiO₃ lead-free piezoceramics.

Die Vortrag findet um **16:00 Uhr** im Gebäude der Materialwissenschaften, Lichtwiese, Petersenstr. 23, **Raum 128** statt